Nicolas Shu

nicolas.s.shu@gmail.com

(718) 612-4856

github.com/nicolasshu

nicolasshu.com

linkedin.com/in/nicolasshu

Education

GEORGIA TECH

PhD Machine Learning, 2023	3.7/4.0
MS Electrical Eng., 2021	3.7/4.0
MS Computer Sci., 2021	3.7/4.
Specialization: Machine Learning	

BOSTON UNIVERSITY

MS Biomed. Eng., 2017 3.9/4.0 Late Entry Accelerated Program Specialization: Robotics

BINGHAMTON UNIVERSITY BS Biochemistry, 2015 3.6/4.0

Skills

Created a Python package with socket programming which would allow one to break from the synchronous behavior of Python, and allow one to do real-time audio processing via distributed computing with low latency

- Software was used in 30+ embedded devices for real-time processing and storage of data under a built environment

SHORT-TIME SPEAKER IDENTIFIER

- Created a speaker identification system which achieved over 87% accuracy over 1148 speaker classes under a two-second window

FEW-SHOT (FS) AND ZERO-SHOT SPEAKER IDENTIFIER

 Hybridized an x-vector system with prototypical networks to identify speakers, reaching accuracies up to 87%

- Coupled FS system with detection theory to detect new speakers within only 2.5 seconds, reaching F1 scores up to 0.92

- Created system to simultaneously detect new speakers and identify registered speakers in real-time via zero-shot learning

SPEECH/NOISE/MUSIC CLASSIFIER

- Created a speech/noise/music classifier which achieved over 96% macro F1 score in 0.5s, 1s, 2s windows of audio using a Bahdanau attention layer

3D AUDIO DIRECTION OF ARRIVAL WITH MICROPHONE ARRAY

 Expanded array signal processing techniques to create a 3D direction of arrival framework for audio signals

- Implemented MUSIC and SRP-PHAT algorithms in two dimensions
- Created a 3D visualizer to analyze a 2D signal which evolves in time, using D3.js

MAXIMUM COVERAGE CONTROL OF OMNIDIRECTIONAL SENSORS OVER NON-SIMPLY CONNECTED ENVIRONMENTS

- Created a new framework to perform max. cov. control in a swarm of directional and omnidirectional agents
- Designed control barrier functions and improved on Lloyd's algorithm to allow swarm to maximize coverage in non-simply connected environments

- Ran Monte-Carlo simulations to estimate the optimal number of devices in a built environment before reaching diminishing returns

AUTOMATED SEMI-GUIDED MAZE PATH PLANNING WITH TURTLEBOTS - Run Turtlebot simulations on Gazebo

- Image classification using KNN and implement a PID controller in order to find the goal of a maze

Q-LEARNING ALGORITHM FOR PATH PLANNING

- Followed dynamic programming to implement a Q-learning algorithm to find the shortest path

- Use Q-learning to perform path planning on a probabilistic field where the goal dynamically changed

ONLINE LEARNING CLASSIFICATION OF LIDAR OBSERVATIONS FOR AN **ENVIRONMENT**

- Implemented Bayesian linear regression, perceptrons, and SVMs to classify environments based on LIDAR data

FACE DETECTION WITH DALAL-TRIGGS ALGORITHM

USING LEVEL SETS TO DEVELOP ACTIVE SHAPE MODELS OF IMAGES

IMAGE SEGMENTATION WITH GAUSSIAN MIXTURE MODELS AND KNN

ADVERSARIAL SEARCH ON A QUEENS ISOLATION GAME WITH MINIMAX AND ALPHA-BETA PRUNING

ASL INTERPRETATION WITH DYNAMIC TIME WARPING ALGORITHMS AND HMMS

- Few-shot Learning
- Statistical Signal Processing
- Array Signal Processing
- Networked Control
- Probabilistic Graphical Models
- Classical Computer Vision
- Photography
- Transformers
- Attention Networks
- Speech Processina
- Kalman Filters

of Proficiency

)ther Topics

ESP LAB, GEORGIA INSTITUTE OF TECHNOLOGY

Graduate Research Assistant

Sep 2020-Present

- Created a speech/noise/music classifier with an attention layer with accuracy of above 96%, while maintaining a low footprint of 335MB ir memory, making it suitable for embedded systems

- Expanded the MUSIC and SRP-PHAT algorithms to 2D to determine direction of arrival of signals arriving at simulated microphone arrays
- Wrote a GUI to process LIDAR data to map the interior of a home, using D3.js
- Created method to hybridize few-shot learning with probabilistic models in detection theory to detect appearance of new classes within 2.5 seconds, obtaining F1 scores up to 0.92

- Created method to convert few-shot algorithm to zero-shot learning, allowing speaker identifier to detect new speakers, auto-enroll speakers, and identify speakers with adaptive statistics in a coupled online algorithm. This is capable of working on 2.5s of audio of neverseen before speakers.

- Developed a networking framework for Python communication of different computers via a local area network
- Setup a networked platform between multiple RPis and a server to run auto-enrollment and speaker identification in real-time, storing deidentified speaker information in a time-series database InfluxDB
- Created a front-end dashboard using React is to show real-time digestible information from InfluxDB

CLIFFORD LAB, EMORY UNIVERSITY SCHOOL OF MEDICINE, ATLANTA GA

Graduate Research Assistant

May 2018-April 2022

- Reviewed dozens of biomedical signal processing submissions to the conference Computing in Cardiology from 2019 to 2022
- Cooperatively organized and performed an installation of 35+ RPis across a built environment for the monitoring of people with mild-
- cognitive impairment, including cameras, microphones, and temp/humidity/light sensors, working with electricians to install the devices
- Collaborated with cross-functional teams consisting up to 31 people from different labs, schools, and departments
- Operated on several PHI datasets with HIPAA regulations, and handlabeled PHI datasets in audio, video and text domains
- Developed a calibration method and calibrated 140 microphones in 35 microphone arrays to be used in a built environment
- Setup initial time-series database InfluxDB to log data collected from various devices in a built environment
- Implemented a speech recognition system that would be vocally activated by a keyphrase trained on a particular individual

IROBOT, BEDFORD MA

Machine Learning Intern

- Developed computer vision algorithms to assist robots to achieve improved docking
- Utilized green screens to create augmented datasets of different docking stations
- Won 1st place intern competition for creating novel robot to bring to market

NATIONAL EMERGING INFECTIOUS DISEASES LABORATORIES, BOSTON MA

Graduate Research Assistant

- Developed fluoroscopic screening assays in synthetic biology for directed evolution experiments for the development of enzyme-based biosensors targetting nicotine

- Perform multiple microarray assays to optimize hydrogen peroxide detection in cell-free assays
- Expressed and purified enzymes for enzymatic assays using various methods including Fast Protein Liquid Chromatography
- Proposed new pathway for the prokaryotic transcription factor lysR via ChIP-Seq

GEORGIA TECH: Instructor of Record

GEORGIA TECH: Teaching Assistant

CERTIFICATIONS

- GTA Preparation

1) Center for the Integration of Research, Teaching and Learning - Associate Level

2) QPR Gatekeeper Certificate BOSTON UNIVERSITY: Teaching Assistant

- Artificial Intelligence (Sum2022, F2022, Spr2022, F2023, Spr2024) - Quantitative Analytical Chemistry (Sum. 2016)
- Advanced Digital Signal Processing (Sum2023)
- Introduction to Signal Processing (F2017, Spr2018)
- Organic Chemistry II (Sum. 2016)
- 1. N. Shu, D. Anderson, "Coupled Auto-Enrollment and Speaker Identification Platform in Real-Time" (Under preparation)
- 2. N. Shu, D. Caulley, D. Anderson, "A Complete Derivation of the Probabilistic Linear Discriminant Analysis" (Under preparation)
- Y. Wang, N. Shu, D. Anderson, "HAPPi: A Hybrid Attentional Prototypical Networks Framework with Pi-Model for Few-Shot Sound Classification" Knowledge-Based З. Systems (Under Review)
- 4. N. Shu, Y. Wang, D. Caulley, D. Anderson, "SlimNet: A Lightweight Attentive Network for Speech-Music-Noise Classification and Voice Activity Detection" IEEE Edge 2024 (Under Review)
- N. Shu, D. Anderson, "Audiosockets: A Python socket package for Real-Time Audio Processing" arXiv 5.
- G. Clifford, J. Zelko, N. Shu, P. Suresha, A. Cakmak "System and Methods for tracking behavior and detecting abnormalities" US Patent App. 17/430, 414, 2022 6
- C. Feustel, N. Shu, G. Clifford, D. Anderson, C. Zimring "Practical High-Fidelity Sensing of the Sleep Environment in the Home" Proc. PErvasive Technologies Related to 7 Assistive Environments, 2022
- S. Hanz, N. Shu, J. Qian, N. Christman, P. Kranz, M. An, C. Grewer, W. Qiang "Protonation-Driven Membrane Insertion of a pH-Low Insertion Peptide", Angew Chem Int Ed Engl. 2016, 55 (40):12376-81 DOI:10.1002/anie.201605203.
- 9. N. Shu, M. Chung, L. Yao, M. An, and W. Qiang "Residue-specific structures and membrane locations of the pH-Low insertion peptides by solid-state nuclear magnetic resonance", Nature Communications, 2015, 6 (7787) DOI: 10.1038/ncomms8787
- W. Qiang, R. Akinlolu, M. Nam, and N. Shu "Structural Evolution and Membrane Interaction of the 40-Residue \beta-Amyloid Peptides: Differences in the Initial Proximity between Peptides and the Membrane Bilayer Studied by Solid-State Nuclear Magnetic Resonance Spectroscopy" Biochemistry, 2014, 53 (48), pp 7503-7514 DOI: 10.1021/bi/501003n

May 2019-Aug 2019

May 2016-July 2017