
Project
Portfolio
Nicolas Shu

Platform

Gazebo

ROS

Languages/Libraries

Python

OpenCV

Automated Semi-Guided Maze Path Planning
with Turtlebots

The project is focused on implementing a real-time algorithm on a Turtlebot, which
is a robot built on a Raspberry Pi with ROS, to navigate through a real-life maze,
where traffic figures are placed around the maze which indicate the direction to the
goal. As the Turtlebot possesses a RaspiCam, extensive image processing was per-
formed on the incoming images to then use the processed data as an input vector
to a k-Nearest Neighbors algorithm to identify the suggested direction. Once the
robot had identified the direction, the robot would use a PID controller to traverse to
the direction, making sure to contour walls, and continuously loop through the algo-
rithm until it found the goal. The project was first implemented on Gazebo, and once
it worked, the hyperparameters were reoptimized for the real-life maze since the
simulated world was scaled differently.

Languages/Libraries

Python

OpenCV

Scipy

Identifying faces on an image has become a very important tool, especially in digital
photography. Although Viola-Jones were the initial algorithms used in digital cam-
eras to identify faces, this project was implemented with the methodology de-
scribed by Dalal-Triggs, by utilizing the concept of histogram of gradients (HoG) to
create features to be passed through a support vector machine classifier. The clas-
sifier was trained on positive and negative samples, and then mined for hard nega-
tives, as described by Dalal-Triggs, by training it again on false-positive examples to
obtain a more robust classifier. The dataset was further augmented by adding vari-
ational disturbances to increase both positive as well as negative samples (e.g. face
flipping every face double the positive dataset). A sliding window was passed
through the HoG feature space in parallel to passing through the image and then
converted to the HoG space, to then be passed through the support vector machine
classifier. To avoid an enormous set of detections, adaptive non-maximal suppres-
sion was implemented to prevent “overcounting”, and to allow focused detection on
a face.

Face Detection with Dalal-Triggs Algorithm

Identifying contours to an object in an image is an
important tool in computer vision that can be ex-
panded into multiple directions, such as using it
as priors for image segmentation. This project
sought out to have a raw implementation of active
shape models by using level sets created by prin-
cipal component analysis in mathematics. By us-
ing a training set to create an efficient set of prin-
cipal components allow the components to work
in congruency to create entire level sets based on
signed distance functions that the cross-sections
are evolved to become contours of a specific type
of object in an image. On the images on the right,
the top left eagle is the true contour and the top
right eagle is the predicted contour using level
sets. An example of level sets for dogs is shown
on the bottom with two different perspectives of
the surface depiction.

Around the world, there are different interpretations on decorations of one’s home or how
a street may look, or the appearance of houses in the suburbs. This project aims to per-
form a scene recognition by using the concept of “bag-of-words” borrowed from Natural
Language Processing in order to create features and to perform a multiclass classifica-
tion. This was achieved by obtaining a large number of SIFT descriptors for the images,
and to cluster the via an unsupervised learning algorithm such as k-means, and each
cluster then becomes a “visual word” and the compendium of words become a “vocab-
ulary”. When training (and testing), each image yield SIFT descriptors, but instead of stor-
ing them all, they are distributed along the visual words and a histogram is created for
such image describing how many SIFT descriptors are in each visual word, and the his-
togram is used as the feature for the classifier. The classifier implemented was a multi-
class support vector machine using the one-vs-all fashion.

Using Level Sets to Develop Active Shape
Models of images

Scene Recognition with Bag of Words

By creating a very basic, low dimensional map with a boundary, a reinforcement Q-
learning algorithm was implemented, which follow major concepts used in dynamic
programming to identify the optimal path based on past experiences to find a goal on
the environment. An additional version of the project was also implemented by adding
a probability distribution of where the goal could be located such that the optimal
path would be influenced by the previous experiences.

This small project was a reproduction of the work from Simonyan et al. in PyTorch where
it is the observation of the saliency maps of how would weights focus on which sections
of an image based on what the network had learned. This is achieved by looking at the
partial derivative of the scoring function to a specific class with respect to the image itself,
which yields the images shown above.

Saliency Maps of Weights in Neural Networks

Q-Learning Algorithm for Path Planning

Given recordings from a drone flying outdoors on an environment and collecting LIDAR
data, this project involved comparing the performance of three different classification al-
gorithms to be implemented (raw) in an online learning fashion in order to classify the dif-
ferent sections of the environment. The algorithms used on the online learning problem
were perceptron, support vector machine classifier, and Bayesian Linear regression. As
they can be seen on the following picture, the environment classes were cable wires
(black), poles (gray), a building wall (cyan), trees (green), and a terrain on the ground
(brown).

The ground truth (left) and the predictions from
a gradient descent algorithm (right) The ground truth (left) and the predictions from

a Bayesian Linear Regression (right)

The project involved implementing a modified version of the Queen Isolation game with
the features that a player could kick another player off the board. This adversarial search
involved the implementation of the minimax algorithm, as well as the alpha-beta Pruning
version of the minimax algorithm. Because the game followed a time constraint of a few
seconds for each round, both algorithms were wrapped to perform iterative deepening
in order to find the best possible move, given an objective scoring function, to play within
a time limit.

Online Learning Classification of LIDAR
Observations of an Environment

Adversarial Search on a Queen Isolation
Game with Minimax and αβ-Pruning

As temporal data are very interesting and challenging to work with, dynamic time warping
algorithms were used on a 2D projection of a single hand as well as the 2D projection of
two hands when doing ASL signs to be translated to words. This involved a raw implemen-
tation of hidden Markov models and a raw implementation of the Viterbi-Trellis algorithm
to allow the propagation over the HMMs.

Often times, datasets do not have a ground truth label, hence unsupervised learning
algorithms allow clustering to occur on such types of data. This project involved the raw
implementation of k-means algorithms and Gaussian Mixture Models in vectorized forms
to beat time limits to perform image segmentations over the colors of photographs. In
other words, the algorithms were required to be fast enough to segment images before
a timer ran out by using vectorization over the code. The original photograph is shown
on the left, which is followed by segmentations sorted by number of components (or
centroids), which are 2, 3, 4, and 5.

American Sign Language Interpretation with
Hidden Markov Models and DTW

Image Segmentation with Unsupervised
Learning Algorithms

When designing a speaker identification system, it is im-
portant for a real-time system to be able to detect
whether an individual has been heard before or whether
it belongs to a brand new speaker. This project inte-
grated probability theory, few-shot learning, and speaker
identification systems to develop a system capable of
detecting whether a voice belonged to the set of regis-
tered speakers or not, reaching F1 scores up to 0.92.

Sensor placement in an environment is important for max-
imum coverage. However, typical algorithms used for
maximum coverage are incapable of performing maxi-
mum coverage in non-simply connected environments
without good initial conditions. An interactive framework
was built in Python in order to run experiments for net-
worked agents. It is capable of creating tessellations in
non-simply connected environments, and it allows for
continuous measurements, allowing for quantitative de-
termination of covered area. A robust networked control
was created to allow for randomized initializations, and to
provide exploratory controls for each individual agent.
This entire project was made from scratch

Detection of Out-of-Class Samples in Speaker
Identification

Robust Maximum Coverage Networked
Control for Sensor Networks

−30 −20 −10 0 10 20 30

−10

−5

0

5

10

15

20

t = 19.8sec

0.00

0.02

0.04

0.06

0.08

0.10

D
en

si
ty

of
lo

g-
lik

el
ih

oo
d

s unseen classes

seen classes

−140 −120 −100 −80
log-likelihood

0.00

0.02

0.04

0.06

D
en

si
ty

of
lo

g-
lik

el
ih

oo
d

s test seen

test unseen

train seen

train unseen

valid seen

valid unseen

Languages/Libraries

Tensorflow

Languages/Libraries

Python

Most speaker identification systems require
enrollment of voices in order to identify those
individuals by their voices. However, this re-
quires a large amount of speech, ranging be-
tween 30mins to hours of speech, making it
difficult to obtain. This project coupled proto-
typical networks with probability theory and
dynamic adaptation to develop a system ca-
pable of learning an individual's voice within
2.5 seconds, operate in real-time, and re-
identify and adapt them via zero-shot learn-
ing.

Most speaker identification systems require
enrollment of voices in order to identify those
individuals by their voices. However, this re-
quires a large amount of speech, ranging be-
tween 30mins to hours of speech, making it
difficult to obtain. This project coupled proto-
typical networks with probability theory and
dynamic adaptation to develop a system ca-
pable of learning an individual's voice within
2.5 seconds, operate in real-time, and re-
identify and adapt them via zero-shot learn-
ing.

Few-Shot and Zero-Shot Speaker
Identification

Few-Shot and Zero-Shot Speaker
Identification

0 100 200 300 400 500

Time (s)

−2

Noise

0

1

2

3

4

5

S
p

ea
ke

r

0 100 200 300 400 500

Time (s)

−2

Noise

0

1

2

3

4

5

S
p

ea
ke

r

0 100 200 300 400 500

Time (s)

−2

Noise

0

1

2

3

4

5

S
p

ea
ke

r

0 100 200 300 400 500

Time (s)

−2

Noise

0

1

2

3

4

5

S
p

ea
ke

r

Languages/Libraries

Tensorflow

Languages/Libraries

Tensorflow

In this project, I created a Python package capable of socket programming allowing mul-
tiple nodes (e.g. Raspberry Pis) to communicate with a central server in real-time to do
real-time signal processing for speaker identification under very low latencies. The
project would send real-time data to the server, which would log it onto an InfluxDB data-
base after it had been processed, and show the results on a front-end dashboard. This
was mounted inside a home, which was mapped via a LiDAR sensor, and the micro-
phones were placed at optimal locations in the home.

Audiosockets and Dashboard for Real-Time
Speaker Identification

−4 −2 0 2 4

−6

−4

−2

0

2

4

6

t = 1.99sec

Recorder
Audiosocket

Recorder
Audiosocket

Recorder
Audiosocket

Recorder
Audiosocket

Server
Audiosocket

Front-End
Dashboard

Pr
oc

es
so

r A
ud

io
so

ck
et

Register New
Class / Speaker

True

False

Speaker =
New Speaker

Speaker =
Closest Cluster

Simultaneous
Data Streams

Languages/Libraries

Python
Javascript
ReactJS

Tensorflow
Networked Control

